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The calculation of mode coupling contributions to equilibrium time correlation 
functions from the nonlinear Boltzmann equation is reconsidered. It is suggested 
that the use of a nonlinear kinetic equation is not appropriate in this context, 
but instead such calculations should be reinterpreted in terms of the Klimonto- 
vich equation for the microscopic phase space density. For hard spheres the 
Klimontovich equation is formally similar to the nonlinear Boltzmann equation, 
and this similarity is exploited to explain the successful calculation of mode 
coupling effects from the latter. The relationship of the Klimontovich formula- 
tion to the linear ring approximation is also established. 
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1. I N T R O D U C T I O N  

The slow decay of equi l ibr ium correlat ion funct ions for long times is 
associated with the coupling of hyd rodynamic  modes. The most  detailed 

microscopic just i f icat ion for such mode  coupl ing is a kinetic theory descrip- 
t ion for gases, in which a selective class of secular collision sequences is 

summed.  This is the "r ing" approximat ion,  and  is characterized by a l inear 
operator  consist ing of the usual  Bol tzmann  b inary  collision operator  plus a 

correction due to the m a n y - b o d y  ring collisions. (~  A n  alternative, and  
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considerably simpler, description of the long-time behavior of correlation 
functions for gases has been given by Hauge. (2) In place of the detailed 
many-body contributions of the ring approximation, he assumed that these 
corrections can be incorporated simply by the replacement of the linear 
Boltzmann kinetic equation with the corresponding nonlinear Boltzmann 
equation. Indeed, it was shown that the long-time behavior of the Green- 
Kubo correlation functions for transport coefficients calculated in this way 
agree in detail with the results of the linear ring kinetic theory. More 
recently, the method of Hauge has been extended in an attempt to describe 
higher densities. (3) Such calculations have also been interpreted as showing 
the existence of slowly decaying solutions to the nonlinear Boltzmann 
equation. (4) However, Ubbink and Hauge (5~ indicated that there are seri- 
ous conceptual and mathematical problems associated with the justification 
of the nonlinear Boltzmann equation for equilibrium time correlation 
functions. The purpose of the discussion here is to clarify in what sense the 
nonlinear Boltzmann equation applies and show its relationship to the ring 
kinetic approximation. 

In an attempt to relate the linear and nonlinear kinetic descriptions, 
Ubbink and Hauge showed that the usual derivation of the nonlinear 
Boltzmann equation for reduced distribution functions fails when applied 
to time correlation functions. The reason for this is that the nonlinear 
cluster expansion of the BBGKY hierarchy (6~ introduces initial correlations 
to the lowest order in the density that do not decay in time. In contrast, the 
linear cluster expansion of the ring kinetic theory (7~ is more appropriate for 
the special initial conditions associated with time correlation functions, and 
has no such problems. This difference is actually one reflection of a more 
fundamental difficulty to be expected in any attempt to justify the nonlin- 
ear Boltzmann equation in this context. It is shown in the next section that 
the general symmetry properties of equilibrium time correlation functions 
require that the kinetic theory be linear. This fact is well known, (8) although 
not always stated explicitly, as a difference between kinetic theories for 
reduced distribution functions (which are nonlinear in general) and those 
for time correlation functions. Consequently the application of any approxi- 
mate nonlinear kinetic theory for the latter will necessarily entail internal 
inconsistencies. Here, the point of view is taken that such inconsistencies 
are too serious to admit the nonlinear Boltzmann equation as a reasonable 
model for equilibrium correlation functions. Instead, the success of Hauge's 
calculation of mode-coupling effects is explained by exploiting a close 
relationship between the nonlinear Boltzmann equation for the average 
phase space density, and the Klimontovich equation for the microscopic 
phase space density. In this way the following questions are addressed: 

(1) Is there some sense in which time correlation functions can be 
calculated from a nonlinear Boltzmann equation? 
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(2) Can the mode-coupling calculations of Hauge be justified? 
(3) How do the many-body ring contributions arise from the nonlin- 

ear Boltzmann operator, which apparently describes only binary collisions? 
The answers to (1) and (2) are affirmative if the nonlinear Boltzmann 

equation is reinterpreted as applying to the microscopic phase density, 
rather than to the dependent variable of the kinetic theory. The answer to 
(3) is shown to depend on the method used to approximate the nonlinear 
Klimontovich equation. 

2. LINEAR AND NONLINEAR FORMULATIONS 

In this section two exact formulations of the time correlation functions 
are given. The first is in terms of the average dynamics in the single-particle 
phase space. This dynamics is shown to be linear and defines the linear 
kinetic theory for time correlation functions. The second formulation is 
based on the microscopic single-particle phase density which satisfies the 
nonlinear Klimontovich equation. The precise relationship of these two 
formulations is established, and the formal similarity of the Klimontovich 
equation for hard spheres to the nonlinear Boltzmann equation is used to 
clarify the role of the latter in calculating time correlation functions. 

2.1. Linear Kinetic Theory 

The utility of kinetic equations is due to the fact that many observ- 
ables of interest are represented by sums of single-particle functions, 

N N 

A = E a(x i ) ,  B = ~] b (x i )  , e tc .  (2 .1 )  
i = l  i=1 

where x i denotes the position and momentum of the ith particle. The 
equilibrium time correlation function for two such observables is defined 
by 

CAB(t) = (A*(t)[ B - ( B ) ] )  (2.2) 

The brackets denote an equilibrium ensemble average, and the asterisk 
indicates complex conjugation. Because of the form of the phase functions, 
A, B, Eq. (2.2) defines a time-dependent functional of the single-particle 
quantities, a(x) and b(x): 

C,[a,b] -= CAs(t) (2.3) 

The class of single-particle functions is taken to be the elements of a 
Hilbert space, H, with scalar product 

b) = f dx ro(x)a*(x)b(x ) (a, (2.4) 
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where Fo(x ) is the Maxwell-Boltzmann distribution function. The following 
properties of Ct[a,b] then hold: 

Ct[a,b ] <~ (a,a)(b,b) V2 

C,[ a, fl,b, + b23 = fl,Ct[ a,b, ] + fl2Ct[ a, b2] (2,5) 

C,[ Olla ' ...[- ol2a2,b 3 = ol~ Ct[ al,b ] dr- ol~ C,[ a2,b ] 

where a t, a 2, ill, and /~2 a r e  arbitrary complex scalars. These properties 
characterize Ct[a, b] as a bounded bilinear (sesquilinear) functional on H. It 
follows from the Reisz representation theorem (9) that there exist y,, z t such 
that 

C , [ a , b ]  = (a, yt)  = ( z t , b )  

o r  

C,[a,b] = (a, Utb ) (2.6) 

where U t is a linear operator. This result may be written more explicitly as 

Ct[ a, b] = f dx Fo(x)a*(x)~(x,  t) (2.V) 

with 

+(x, 0 = (U,b)(x) (2.8) 

Therefore the correlation functions, when represented in terms of the 
average dynamics in the single-particle phase space, are determined from a 
linear kinetic equation. Conversely, any nonlinear approximation to U t 
necessarily violates one of the general properties, (2.5). The above results 
are exact for all times, and are not restricted to low-density. [Actually, (2.6) 
is even more general than the discussion here indicates, and applies to the 
quantum case as well with suitable changes in the scalar product (l~ 

An explicit but formal representation of the operator, U t, is possible in 
terms of the microscopic phase space density, 

N 

f ( x ,  t )= ~ 8(x - xi(t)) (2.9) 
i=1  

where x is a field point in the single-particle phase space. As the name 
indicates, f (x ,  t) is the exact number density for particles with momentum 
and position, x, at time, t. It is convenient to define the normalized 
deviation of f (x ,  t) from its equilibrium average by 

f (x ,  t) - Fo(x ) 
gO(x, t) = Fo(x ) (2.10) 

Then the correlation function can be expressed as 

Ct[a,b] = f dxFo(x)a*(x)  f dx 'Fo(x ' )G(x, t ;x ' ,O)b(x)  (2.11) 
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with 

G(x, t; x', O) = (~(x, t)~(x')) (2.12) 

Comparison of Eqs. (2.11) and (2.8) shows that 

= f d x '  ro(x' ) G(x, t; x', O)b (x') ( 2 . 1 3 )  44 x, t) 

so that G(x, t; x',O) is now identified as the kernel of the linear operator, 
U t. It follows that G(x, t; x', 0) satisfies the same linear kinetic equation as 
~b(x, t), except with different initial conditions. For completeness, the for- 
mal linear kinetic equation for G(x, t; x', 0) is obtained in Appendix B. The 
result is 

a)G(t) + f0'dt' K(t - t')G(t' ) 0 (2.14) ( - ~ / +  = 

where ~2 and K(t) are linear operators whose formal definition is also given 
in Appendix B. The analysis of these operators is the principal problem in 
the linear kinetic theory approach to equilibrium time correlation functions. 
In particular, ~2 can be determined exactly (8'10 and is known as the 
generalized Enskog operator. The mode-coupling effects are contained in 
the operator, K(t). 

As a specific example, consider the current-current correlation func- 
tion associated with the kinetic parts of the Green-Kubo expressions for 
transport coefficients. This corresponds to the choice 

a(x) = V b ( x ) = j ( v )  (2.15) 

where V is the volume of the system and j (v )  is a function of the velocity 
only. In Ref. 5 the correlation function is rewritten using the identity, 

j (v )  = f dx o j(vo)6(v - Vo) W(r - ro) (2.16) 

for one of the currents. Here, W(r) is an arbitrary function with the 
normalization, 

f d r  W(r) = 1 (2.17) 

Then, using the invariance of the equilibrium ensemble under spatial 
translations, Eq. (2.11) becomes 

c(t) = f dvo Fo(vo)j(vo) f dx Fo(x)j(v)~w(x, t) 
(2.18) 

~w( x, t) = f &' a( x, t; x', 0 ) a ( v '  - ~0) W ( r '  - f0) 

This representation for +w(X, t) is equivalent to that defined in Ref. 5. As 
noted in the Introduction, the latter authors assume that the long-time 
behavior of C(t) for a low-density gas can be calculated from a nonlinear 
Boltzmann equation for ~bw(X,t ). The main point of this section is to 
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emphasize that such an assumption is inconsistent with the fundamental 
bilinearity of C(t), as expressed by Eq. (2.5). It may be thought that the 
introduction of the arbitrary function W(r) somehow circumvents the 
above requirements, to allow a nonlinear representation for this special 
class of initial conditions. However, Eq. (2.18) clearly shows the linearity in 
this case. [That is, if W 1 and W 2 have the normalization (2.17), then so 
does any convex combination, W = ~xW I + (! - ~)W2; consequently ~w = 
a~bw, + (1 - a)~bw2 and the evolution is linear.] Equation (2.18) is a special 
case of the general linear kinetic theory formulation with the identification, 

[ 3 ( v - v ~ 1 7 6  ] (2.19) 
~w(X, t) = U, ro(vo) 

In summary, correlation functions of the type (2.2) may be represented 
as averages over the effective dynamics in the single-particle phase space. 
This dynamics is necessarily linear and consequently the associated kinetic 
equations are linear. A formal expression for the kinetic theory can be 
obtained as in Eq. (2.14) where the operators f~ and K(t) are to be 
evaluated in some approximation suitable for the system considered. A 
low-density evaluation of ~ and K(t) leads to the linear Boltzmann equa- 
tion, for times not too large. For asymptotically long times other many- 
body effects must be included, even for low density, leading to the linear 
ring approximation. 

2.2. Klimontovich Formulation 

The kernel for the liner operator, Ut, defined by Eq. (2.12) is closely 
related to the microscopic phase space density, f(x, t). The time dependence 
of f (x ,  t) is governed by Hamilton's equations. However, the special form of 
f(x, t) as the sum of 3 functions in the phase variables allows Hamilton's 
equations to be converted into an equation for f(x, t) with x and t as 
variables rather than {xi} and t. In the latter case the equation is called the 
Klimontovich equation312) The two equivalent sets of equations are 

0t i=l 3ql 3Pi 0pi ~q~ 
(2.20) 

3f _ v .v f  + ~dx'O(x,x')f(x)f(x')o 3t 
where H is the Hamiltonian and O(x, x') is the operator: 

O(x,x') = V V(r - r') - ( r e  - re,) (2.21) 

and it has been assumed that the potential, V(r), is continuous and 
differentiable. The line through the integral denotes a principal part with 
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the point x = x' deleted (the self-force contribution). Each equation of 
(2.20) has its advantages and disadvantages. The first is linear but has 6N 
independent variables; the second equation has only six variables but is 
nonlinear. Since the Klimontovich equation involves the same variables as 
the kinetic equation for ~p(x,t) it is sometimes referred to also by that 
terminology. The crucial difference, however, is that the initial condition 
for the Klimontovich equation still depends on all phase points (xi), while 
these variables have been averaged over in ~(x, 0). 

It is somewhat surprising to recognize that the exact Klimontovich 
equation has the same form as the nonlinear Vlasov equation, an approxi- 
mate equation for the reduced distribution function of a nonequilibrium 
state. This was apparently first noted by Vlasov. ~13) More recently, it has 
been shown that the Klimontovich equation for a fluid of hard spheres has 
the form of the nonlinear Boltzmann equation (14) (this result is also implicit 
in the earlier discussions of binary collision dynamics for hard spheres ~ 15)). 
The Klimontovich equation in this case is (see Appendix A for a brief 
derivation) 

with 

J[ f, f] = f dx' T_ (x, x')f(x, t)f(x', t) (2.23) 

and T (x,x') is a binary collision operator, defined by Eq. (A10), (the 
notation here and below is chosen to agree with that of Ref. 16). The binary 
collision operator contains two 8 functions in the positions of the colliding 
pair, corresponding to a separation of the pair by the hard sphere diameter. 
This spatial delocalization is neglected in the usual nonlinear Boltzmann 
equation, so the operator J [f, f] differs from the Boltzmann operator in 
this one respect. The equation for ~(x, t) in Eq. (2.10) follows directly from 
Eq. (2.22): 

where 

= g o ' J [  r0 , F0 ] (2.25) 
= v JE - JE , 1] 

The operator, L, is identified as the generator for the solution to the 
inhomogeneous linear Boltzmann equation. For the rest of the section and 
the following two sections attention will be restricted to the hard sphere 
fluid. Some comments on the relevance of these calculations for more 
general potentials are given in the last section. 
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Let T t denote the nonlinear solution operator for the Klimontovich 
equation for q~. Then G(x, t; x', 0) can be expressed in terms of T, as 

G( x, t; x', O) = ([ T,,( x) ]q~( x')) (2.26) 

This suggests an alternative means to calculate G(x,t;x',O): Look for 
approximations to the Klimontovich equation at the microscopic level, to 
use in the average on the right side of (2.26). Since the Klimontovich 
equation is nonlinear this procedure defines a nonlinear formulation for 
time correlation functions. It should be noted that although T, is the 
solution operator for the nonlinear Boltzmann equation, usually associated 
with gases, there is no limitation to low density in the present context. As 
indicated in Section 4, the additional density effects in G(x,t;x',O) are 
generated by the final average in (2.26); the latter is quite complex due to 
the nonlinearity of T,. 

It is appropriate at this point to compare and contrast the Klimonto- 
vich formulation and the linear kinetic theory. The operators in the 
Klimontovich equation are structurally simple, have explicit dependence on 
the density, are local in time, and approximately local in space. The 
solution to this equation is complicated, however, owing to the nonlinearity. 
The kinetic equation (2.14) is linear in time and therefore easy to solve, but 
it is nonlocal in both space and time, and the operator K(t) is difficult to 
determine as a function of the density. The relationship of these two 
formulations is seen from Eqs. (2.8), (2.13), and (2.26) to be 

Ut @(x)eo(x')) = ( [ Z,~(x) lqS(x')) (2.27) 

The linear operator, U t, is related to U t simply by /_7, = fit U0. Equation 
(2.27) expresses most concisely the difference between linear and nonlinear 
equations for equilibrium correlation functions. Such functions may be 
calculated either from the linear kinetic equation on the left side or from 
the Klimontovich equation on the right side. However, the variables obey- 
ing these equations are different in  the two cases, depending on whether the 
average is performed before or after solving the corresponding equation. In 
particular, although T t is independent of the variables being averaged, it 
does not commute with the average, 

([ r/#(x) ]@(x')) =/= r,<e~(x)@(x')) (2.28) 

because T, is a nonlinear operator. 
The linear kinetic theory for time correlation functions has been 

discussed extensively. In the remainder of this discussion attention will be 
limited to the nonlinear Klimontovich formulation in an attempt to answer 
the questions raised in the Introduction. The first question--In what sense 
can the nonlinear Boltzmann equation apply?--has been answered: #(x, t) 
does not obey the nonlinear Boltzmann equation because of the inequality 
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in Eq. (2.28) and the properties (2.5); however, q,(x, t) obeys the Klimonto- 
vich equation which is formally equivalent to the nonlinear Boltzmann 
equation, and determines the correlation functions through the right side of 
(2.27). In the following section it is verified that the approach of Ref. 5, 
reformulated as applying to the microscopic phase space density, does 
indeed give the correct mode-coupling result for the long-time behavior 
of C(t). 

3. MODE COUPLING FROM THE KLIMONTOVICH EQUATION 

In this section the low-density mode-coupling contribution to the 
correlation functions is shown to result from a simple approximate solution 
to the Klimontovich equation. The solution is represented in terms of a 
sequence of approximations that is expected to converge in the weak sense, 

. . .  ( 3 1 )  

To allow the closest comparison with the results of Ref. 5, the approxima- 
tion will be generated by treating the nonlinear part of the Klimontovich 
equation as a perturbation. Qualitatively, this is based on the fact that for 
long times 0(x,t)  approaches zero [in the sense of (3.1)] so that the 
quadratic term is smaller than the linear term. In the next solution an 
improved perturbation expansion is described. 

A formal solution to the Klimontovich equation is 

O(x,t) = e-L(x)'ep(x) + footdt' e-L(x'(t-")J[O(t'),do(t') ] (3.2) 

and so G(x,  t; x',0) can be written 

G(x,  t; x', O) = e - L(x)tG(x, 0; x', O) + fo'dt' e -  L(x)(t- ,') 

• J[q,(c), q,(t'))~(x') (3.3) 
The argument of the operator, L(x) ,  indicates that its domain is functions 
of x. Further application of (3.2) in (3.3) produces a series in increasing 
powers of the nonlinear operator, J. Neglecting terms beyond first order 
gives the approximation 

O(x,  t; x'O) = a(~ t; x', 0) + G ( 0(x, t; x', 0) (3.4) 

with 

G (~ t; x', 0) --- e - L(X)'G(x, 0; x', 0) 

G(~)(x,t; x',O) = fo'aC e-L(x)('-") f axoFo(xo) T_ (X, Xo) 
(3.5) 

x e-~L(x)+ L(xo)]"{e~(x)~(Xo)e(x')) 
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where the definition of J, Eq. (2.25), has been used. Use of (3.5) in (2.11) 
gives the corresponding approximation for the correlation function, 

C,[ a,b ] = Ct(~ a,b ] + Ct(1)[ a,b ] (3.6) 

with 

C,(~ E a,b] = f dx Fo(x)a*(x) f dx' Fo(x')G(~ x', O)b(x') 
(3.7) 

ctC')[a,b ] = f dx Fo(x)a*(x ) f dx' Fo(x')G(t'(x, t; x', O)b(x') 

The current-current correlation function in the form used by Ubbink 
and Hauge is obtained from the choice (2.15). It is convenient to represent 
the correlation function in terms of its Laplace transform, 

C(z) = s ~dt e-ztC(t) (3.8) 

Substitution of (2.15) into (3.6) and (3.8) leads to the results 

U~ = f d, Fo(v)j(v)Ro(v)j(v ) 
(3.9) 

d(1)(z) = ;dy Fo(v)J(1))Ro(v) f (~)3dk3 f dYt FO(1)t)Tk('l)'D') 

X [z + Lk(v' ) + L_k(v) ] - 'A~(v,e '  ) 

The operators Tk(v,v' ), Lk(v ), and Rk(v ) are defined by 

Tk(V,V' ) = f d ( r  -- r') e-ik'(r-r')T_ (X,X') 

Lk(v ) = e-~k'rL(x)e *k'" (3.10) 

Rk('l) ) = [ Z "1- Lk('/3)] -1 

Equations (3.9) are identical to the corresponding results in Ref. 5 [Eqs. 
(2.12) and Eq. (2.14)], except for the definition of the function Ak(V,V' ). 
Here the latter is defined by 

Ak(V,V' ) = W o -ffo-~V- ~ j (v )  + nh(k) [ j (v)  +j (v ' ) ]  (3.11) 

whereas the definition of Ref. 5 is 

A~H(v,v ') = W k ffo-~v- ~ j ( v ) W  k + nh(k)I j (v  ) +j(v ' ) l  (3.12) 



Mode Coupling from Linear and Nonlinear Kinetic Equations 271 

In (3.11) and (3.12) h(k) is the Fourier transform of g(r) - 1, where g(r) is 
the radial distribution function, and W k is the Fourier transform of the 
function, W(r), in Eq. (2.15). Although the results (3.11) and (3.12) are 
similar, their differences are significant. The Klimontovich form is linear in 
W k, as required by Eq. (2.5), while the nonlinear Boltzmann kinetic 
equation predicts a quadraticdependence on W. Imposing the normaliza- 
tion (2.17) also requires that C(z) be independent of the arbitrary function, 
W. This is exactly true from the Klimontovich formulation (since W 0 = 1 in 
this case), but the nonlinear Boltzmann kinetic model predicts an inherent 
dependence on W k. 

The mode-coupling contribution for the long-time behavior of the 
correlation function is obtained from the hydrodynamic eigenvalues of 
Lk(v' ) + L k(v ) in Eq. (3.9), which exists for sufficiently small k. The 
dominant part of the residues of these poles is determined from A k at k = 0. 
It is clear from Eqs. (3.11) and (3.12) that the Klimontovich and nonlinear 
Boltzmann model results are the same in this approximation. Consequently, 
the mode coupling from the Klimontovich formulation is the same as that 
obtained in Ref. 5. As mentioned in the Introduction this result is in 
agreement with that obtained by other methods (e.g., the ring kinetic 
theory). The details of the calculation from Eq. (3.9) follow closely those of 
Ref. 5 and will not be repeated here. 

The nonlinear Boltzmann equation method, when applied to the 
microscopic phase dynamics instead of the average phase space dynamics, is 
seen to predict the correct asymptotic behavior for the correlation functions 
without violating the bilinearity of such functions. Nevertheless, the con- 
nection with the results from linear kinetic theory (in particular the ring 
approximation) is still not clear. The linear ring approximation yields a 
mode-coupling result of the form (3.9), but with an entirely different 
expression for the function Ak(v, v'). Its equivalence with the above expres- 
sions is again established only in the mode-coupling limit of k ~ 0. In the 
following section it is shown how an improved solution to the Klimontovich 
equation leads to full equivalence with the ring approximation, even outside 
the mode-coupling limit. 

4. C O N N E C T I O N  WITH L INEAR K I N E T I C  T H E O R Y  

To clarify the connection between the two different descriptions of 
time correlation functions, it is useful to understand how the density 
dependence of the linear theory is generated by the Klimontovich equation. 
In the linear case the formal equation (2.14) applies: 
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while the Klimontovich equation gives 

( + (4.2) 

It is clear from comparison of these two exact equations that a// of the 
density corrections to the linear Boltzmann operator, L, that are contained 
in the operators ~2 and K(t). arise in the Klimontovich formulation from the 
nonlinear part. This shows how it is possible for the Klimontovich equa- 
tion, formally the same as the Boltzmann equation, to describe density 
effects beyond those associated with a Boltzmann gas: the variable in the 
Klimontovich equation is stochastic in that a final average over the phase 
variables is to be taken, and the interference of the nonlinearity with this 
average generates the density corrections. Viewed in this fashion, the 
operators S2 and K(t) result from a "fluctuation renormalization" of the 
operator, L. There are several types of density effects that originate in this 
way. One of these is due entirely to initial (static) correlations in the 
equilibrium ensemble and is required to upgrade the linear Boltzmann 
operator to the Enskog operator, ~2 [this is apparent from comparison of 
(4.1) and (4.2) at t = 0]. A second class of density corrections is associated 
with dynamical correlations such as those included in the ring approxima- 
tion to describe collective behavior at long times, even for gases. These 
appear in the operator, K(t). 

The Klimontovich calculation of the last section provides only the 
low-density form of the mode-coupling contribution (the hydrodynamic 
modes are those of the linear Boltzmann operator). The reason for this is 
evident from the above comments. That calculation 'treats J [qS, q~] as a small 
perturbation, but since this operator is responsible for the density correc- 
tions to the Boltzmann approximation to G(t), the expansion can only be 
meaningful at low density. Furthermore, the expansion is not systematic in 
the density as a small parameter, since the latter does not control the size of 
J[~,~] relative to the linear term L[@ The nonlinear term is apparently 
small only at low density and asymptotically long times, when {)2 is small 
compared to ~,. It is precisely in this limit that the method of the last section 
yields the correct prediction for G(t). To describe Shorter times a n d / o r  
higher densities, a better solution to the Klimontovich equation is required. 
One possibility is to extract from the nonlinear term its component in the 
subspace spanned by the set, {~(x, t)}. The remainder is then expected to 
be small in the sense that it is orthogonal to the desired solution. This may 
be accomplished using the projection operator, P, defined in Appendix B: 

J[eo(t),eo(t)] = PJ[eo(t),e~(t)] + (1 - Pt)J[~(t),eo(t)] (4.3) 

The first term on the right side of Eq. (4.3) is linear in c)(x, t) and may be 
combined with the linear operator, L, in Eq. (4.2). The Klimontovich 
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equation then takes the equivalent form, 

oJ 
where f~ is the same Enskog operator as occurs in the linear theory (4.1). 
The new nonlinear term, B [~, ~], is defined by 

B[ ~( t), q~( t) ] = f dx'Fo(x')f_ (x,x')(1 - P,)e~(x,t)~(x',t) (4.5) 

The derivation of Eq. (4.4) is sketched in Appendix C. The equation for 
G(x, t; x', 0) obtained from this new form of the Klimontovich equation is 

(-~t + f~)G(,) = (B[qS(,), ~)(,) ]ff) (4.6) 

Comparison with the linear kinetic theory shows that B [q~, q~] now generates 
only the dynamical effects associated with K(t). 

The stationarity of the correlation function is expressed by 

(CO(x, t)q,(x')) = (q,(x)eo(x', - t)) (4.7) 

Consequently, the correlation function can be calculated from either the 
Klimontovich equation for 4,(x, t) or that for ~ ( x ' , -  t). However, it is 
found that the approximation (3.4) is not equivalent to the corresponding 
approximation obtained from q~(x', - t), except in the mode-coupling limit. 
The reason for this is that the approximation to the dynamics is made 
without any reference to the stationary state. A proper expansion should 
explicitly combine the stationarity with the dynamical approximation for 
self-consistency. Here, the stationarity will be used only as a constraint to 
improve the method of the last section and show how the ring approxima- 
tion of the linear kinetic theory may be obtained from the Klimontovich 
equation. In this spirit the formal solution to Eq. (4.4) may be used to write 
an expression for G(x, t; x', 0) analogous to Eq. (3.3): 

G(x, t; x', O) = e-a(~)tG(x, O; x', O) + fotdt' e-a(x)(t-") 

• (B[q,(t '),  ~(t')]q~(x')) (4.8) 

Truncation of (4.8) to first order, as in the last section, leads to a vanishing 
contribution from the perturbation, B. This is due to the presence of the 
factor 1 - Pt in the definition of B. Before iterating (4.8) to second order, 
the stationarity may be introduced through the condition 

(B[~(t'),c~(t')]e~(x')) = (BId?, q,]~b(x', - t)) (4.9) 

The Klimontovich equation for f f ( x ' , -  t), in the form analogous to Eq. 
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(4.4), is given in Appendix C: 

( { ,  + = 0]  
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(4.10) 

The operator, B, is given by Eq. (4.5) with T (x, x') replaced by a related 
binary collision operator, T+ (x, x'), and the operator, ~, is related to f~ by 

~ ( x ' ) G ( x ,  0; x', 0) = ~2(x)G(x,  0; x', 0) (4.11) 

The simplest approximation to G(x ,  t; x', 0) in this context is obtained 
by substituting the formal solution to (4.10) in (4.9) and 0.8_) and retaining 
only terms up to second order in the perturbation, B and B. The result is 
(see Appendix D for more detail) 

G ( x , t ; x ' , O )  = G(~  + G(1)(x , t ;x 'O)  + G(Z)(x , t ;x ' ,O)  (4.12) 

with 

and 

G(~ t; x' ,  O) = e -e (X) tG(x ,  0; x', 0) 

G(J) (x , t ; x ' ,O)  = 0 

a(2)(x,l;x',O) = - footdff fo td t ' ;dx ldx2a(~  ff;x,,0) 

• F(xp x2; t' - t " )G(~ t ' ;  x' ,O) 

(4.13) 

r ( x ,  x ' ;  t) = f dx~ &~ dx~ Fo(x,)Fo(x~)Fo(X~) T_ (x, x1) 

x C(x,x,,O;x2,x3, - t)~ (x2,x3)a(x~ - x') 

C ( x ,  x p  O; x 2 , x  3 , - t) (4.14) 

= e-tf~(x2)+~(x3)l '(~(x)~(xO(1 - p)o(x2)q~(x3))(~ 

The binary collision operator, T_ (x, x') is the adjoint of T_ (x, x') [see Eq. 
(A9)]. The superscript on the brackets ( )(0)  indicates that this time- 
independent correlation function is to be evaluated in an approximation 
consistent with the stationarity condition (4.7). Repeating the analysis 
leading to (4.13) starting with (e~(x)q~(x', - t ) )  instead, it is found that this 
condition requires 

[~(x~) + ~(x~) - ~(x) - ~(x,)](~(x)~(x,)(1 - e)~(x~)+(x3)) ~~ = 0 

(4.15) 



Mode Coupling from Linear and Nonlinear Kinetic Equations 275 

The solution to this equation is 

<~(x),~(x,)(1 - t')~(x2)~,(x3)> ~~ 

= ~(x,  0; x,, 0)a(x2,0;  x3,0) 

+ [1  + P(x , x , ) ]G(x ,O;x2 ,0 )G(x , ,O;x3 ,0  ) (4.16) 

Here, P(x,  x,) is the permutation operator that exchanges the labels, x and 
x,. Substitution of (4.16) into (4.14) gives the desired self-consistent approx- 
imation: 

r (x ,x ' ;  t) = f dx, dx2dx3go(xl)ro(x2)ro(x3)T_ (x,x,)[  1 + P(X, Xl) ] 

• G(~ t; x 2 , 0)G(~ t; x 3 , 0)T_ (x 2 , x3)8(x 3 - x') (4.17) 

The right side of (4.16) is an exact representation for (~(x),f(x,)(l - P) 
e~(Xz)~(x3) ) only at low density. Therefore the factors G (~ in Eqs. (4.17) 
and (4.13) should also be evaluated at low density. The result (4.13) is then 
indeed equivalent to the ring approximation of linear kinetic theory. (') 

The mode-coupling contributions to the current-current correlation 
functions from the ring approximation have been discussed in detail 
elsewhere and will not be repeated here. As noted above they agree with the 
results of Section 3. The primary conclusion to be drawn here is that an 
improved solution to the Klimontovich equation describes these mode 
coupling effects in the same form as the linear kinetic theory. This point 
could be emphasized by a direct determination of K(x ,x ' ; t )  in Eq. (4.1) 
from the Klimontovich equation, rather than G(x, t; x'O) as above. This is 
accomplished using the relation 

foo I,:(x,x,;t- c)a(x,,C;x',O)= )) (4.1S) 

The result to second order in the perturbation, B, is simply 

X(x, ,x2;  t) = f'(x,,x2; t) (4.19) 

with f ' (x, ,x2;t  ) given by (4.17). Thus the complete linear ring kinetic 
equation is obtained from the Klimontovich equation. 

5. D I S C U S S I O N  

The questions raised in the Introduction have been answered in the 
following way. The analysis of Section 2 shows that the kinetic theory for 
~(x, t) in Eq. (2.7) should be linear, and therefore is not governed by the 
nonlinear Boltzmann equation as a low-density approximation. However, 
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+(x, t) is closely related to the microscopic phase space variable q~(x, t), Eq. 
(2.10), that does obey a "nonlinear Boltzmann equation," the Klimontovich 
equation for hard spheres. It was shown in Section 3 that if the calculations 
of Hauge are reinterpreted as applying to ~(x, t) instead of +(x, t), then the 
correct mode-coupling results are obtained in the same form as given by 
Hauge. However, the method of solving the nonlinear equation by treating 
the nonlinear Boltzmann operator as a small perturbation, is limited to low 
density and asymptotically long times (as noted above, stationarity of the 
approximation is violated outside this limit). In Section 4, the Klimontovich 
equation was written in a form more suitable for a perturbation expansion, 
and the stationarity of G(x,t; x') was imposed. The resulting approxima- 
tion to first nonvanishing order (second) in the perturbation was found to 
be the ring approximation of linear kinetic theory. Alternatively, Eq. (4.19) 
shows that the ring collision operator can be obtained from a second-order 
perturbation expansion of the Klimontovich equation. 

To clarify and elaborate on some of these points the following com- 
ments may be useful. 

(1) Although Eqs. (3.11) and (3.12) show how the calculation based 
on the Klimontovich equation is related to that from the nonlinear Boltz- 
mann equation, still it may be asked why the latter method works at all. 
This can be understood by considering the inequality (2.28) 

<[ (5.1) 
which expresses most concisely the difference between the two methods. 
The inequality arises from the fact that T t is nonlinear and hence generates 
higher-order fluctuations in 6, whereas the right side does not. If the left 
and right sides of (5.1) are each calculated to first-order perturbation theory 
as in Section 2, the results are seen to differ only by the time-independent 
fluctuations 

# (5.2) 

However, in the low-density limit it is seen that the left and right sides of 
(5.2) are indeed the same. Therefore, to first-order perturbation of T z, and 
to lowest order in the density, the left and right sides of (5.1) are equal. 

(2) The test function, W(r), of Eq. (2.16), was introduced in Ref. 5 in 
order to apply the inhomogeneous nonlinear Boltzmann equation; without 
the latter, the hydrodynamic modes would not appear. However, W(r) 
clearly should not appear in any approximation to the correlation function 
and, as indicated in Ref. 5, this is a difficulty in the nonlinear kinetic theory 
outside the mode-coupling limit. In the Klimontovich equation the function 
W(r) is extraneous, since the variable ~(x, t) that obeys this equation is 
defined at the microscopic level; the Klifnontovich equation is always 
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inhomogeneous. The function W(r) simply cancels out identically as it 
should from Eq. (2.16). 

(3) The application of the Klimontovich equation in Sections 3 and 4 
are quite different. In Section 3 the nonlinear Boltzmann operator aT[~, ~] is 
treated as a small parameter. Such an expansion is limited to both, low 
density and long times. In Section 4 two changes were introduced: The 
Klimontovich equation was restructured in such a way that the new 
nonlinear term, B [~, ~], should be small (in the sense that it is orthogonal to 
the exact solution), and the stationarity of G(x,t;x',O) was required to 
hold. These constraints compromise severely the simplicity of the mode- 
coupling derivation of Section 3. Consequently, it appears that if one wants 
more than the mode-coupling limit (e.g., the complete ring kinetic theory), 
application of the Klimontovich is as complex as the many-body analysis 
of the linear kinetic theory. 

(4) The nonlinear Boltzmann equation, which is based on the as- 
sumption of only binary collisions, cannot be equivalent to the ring 
approximation which includes many-body effects. In contrast the depen- 
dent variable, q~(x, t), of the Klimontovich formalism depends on the 
microscopic state of the system and contains the complete many-body 
dynamics, as the derivation in Appendix A indicates [e.g., compare left and 
right sides of Eq. (A10)]. 

(5) The attempt to extend the mode-coupling calculations to higher 
densities in Ref. 3 is not correct. This authors calculate the hydrodynamic 
modes from the eigenvalues of the linear Boltzmann operator, L k in Eq. 
(3.10), retaining the delocalization effects on the binary collision operator 
[the k-dependence of Tk(v,v' ) in Eq. (3.10)]. This gives some of the first 
Enskog density corrections to the Boltzmann eigenvalues, but not all of 
them. Instead, the correct eigenvalues are obtained from the low-density 
limit of the operator ~2, given explicitly by Eq. (B11). This differs from L by 
the terms depending on the direct correlation function in (B11). It may be 
noted that the ring approximation of Section 4 is correctly described in 
terms of the low-density limit of ~, rather than L. 

(6) The relationship of the Klimontovich equation to the Boltzmann 
equation is close only for the special case of hard spheres. The reason for 
this is that the usual Boltzmann equation results only for times large 
compared to a collision time whereas the Klimontovich equation is exact 
for all times. However, for hard spheres the collision time is arbitrarily 
small and the two equations are formally the same. To apply the Kli- 
montovich equation for continuous potentials therefore requires a re- 
arrangement analogous to that of Section 4 to include the description of a 
complete binary collision. While this is possible to do, the result is consider- 
ably more complex and cumbersome than the hard sphere case. 
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(7) The discussion at the end of Appendix A shows that the terminol- 
ogy Klimontovich "equation" is misleading. It is actually an identity 
satisfied by the unique function, f(x,  t), defined by Eq. (2.9). This is in 
contrast to the Hamilton's equations or Liouville's equation that apply to 
all phase functions. Consequently, certain paradoxes can arise if the distinc- 
tion is not made. For example, a scale change in the initial conditions, 
f(x,  O)---> af(x, 0), implies a corresponding change in the microscopic phase 
density at time t, f(x,  t ) ~  af(x, t). While Liouville's equation is invariant 
under this transformation, as might be expected, the Klimontovich equa- 
tion is not. It is transformed, instead, to the bilinear form (A12). 
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APPENDIX A: HARD SPHERE DYNAMICS 

The force of interaction between two particles is singular for hard 
spheres, and the usual formulation of dynamics in terms of the Liouville 
operator as the generator of time translations must be extended. This 
problem has been discussed in detail elsewhere ~6) so only the relevant 
results will be quoted here. The pseudo-Liouville operator for hard spheres 
is defined for positive times by 

(AB(t))  = (AeJ+tB ) ( a l )  

The corresponding result for negative times is determined from time 
translational invariance, 

(AB(t) )  = ( A ( - t ) B  ) = ( ( e - J - ' A ) B  ) (a2) 

An explicit representation of these operators is 

N 

S+_ (x N) = • ~Zao(Xi) + 1 7~2  T+ (xixj) (A3) 
i =  1 i - / - j  

with 

J 0 ( x , )  = v , .  

T+ (x, ,x2) = aZ~da [g.  ~10 ( -V-g  �9 O ) 8 ( r ,  - r2 - ~ ) ( b o  - l )  
. J  

(A4) 

In this equation g is the relative velocity, g = v I - v:, and 0 is the Heaviside 
step function restricting the integration to either the forward or backward 
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hemisphere. Also, a is the hard sphere diameter and the operator, bo, 
changes the velocities of the pair x l, x 2 to their scattered velocities, 

boy, = v, - 3 0 . g  ), boy 2 = v2 + 8 ( ~ . g )  (A5)  

The Klimontovich equation for hard spheres now follows by consider- 
ing the time dependence of the phase space density, f (x ,  t) defined by 
Eq. (2.9), 

0 
0-7 f ( x ,  t) = <1~ f (x ,  t) (A6) 

for positive ( J + )  and negative ( J _ )  times. The operators . f +  act on the 
implicit dependence of f ( x , t )  on the positions and momenta of all the 
particles of the fluid. However, since this dependence occurs through 8 
functions at the point x, it is possible to express ~-~+ in this case as 
operators on the variables x. This may be accomplished using the identi- 
ties (16) 

T_+ (x I ,x2)6(x - xi)8(x '  - x2) = T~ (x ,x ' )6(x  - xi)6(x '  - x2) (A7) 

J o ( x i ) f ( x ,  t) = v.  V f (x ,  t) (AS) 

The binary collision operators, T_+ (x, x'), are defined by 

T+ (x 1,x2) = o 2 f d 3 i g  �9 3 1 0 ( - T g - 3 ) [ 6 ( r , -  r 2 -  g)b o - o(ri - r 2 + g)]  

(A9) 

and the notation is the same as that of Eq. (A4). The action of J +  on f (x )  
is then 

J +  f ( x )  = - v .  Vf(x) +_ �89 ~ T• (xg ,xj)[ ~(x - xi) + 6(x - xj)] 
i . j  

where use has been made of the fact that T+_ (xi,xj) vanishes when 
operating on a phase function independent of x i or xj. Introducing a 
second 3 function and application of (A7) gives 

=_1~ f ( x )  = - v .  Vf(x) +fax, T~ (x ,x , )[  f ( x ) f ( x ' )  - 3(x - x ' ) f ( x ) l  

(A10) 

The last term in the integrand proportional to a 6 function vanishes owing 
to the 6 functions in the definition of T+ (x, x'). The Klimontovich equa- 
tion now follows directly from Eqs. (A6) and (A10): 

(-D,  )i(x,o = +- (A,,) 
The upper signs on the right side refer to positive times, while the lower 
signs are for negative times. 
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There are some important distinctions between the Liouville form, 
(A6), and the Klimontovich form, (A11). The former is an equation in the 
sense that it defines a wide class of solutions, one of which is f(x,  t), and 
uniqueness is obtained by supplementing the equation with initial condi- 
tions. In contrast, the Klimontovich form applies only for the particular 
phase function, f(x,t),  defined by Eq. (2.9); the initial conditions are 
already implicit in (A11). The Klimontovich equation should therefore be 
viewed more properly as an identity for the particular f(x,  t) considered. 
This distinction is illustrated by repeating the above derivation for the 
function, y(x,  t)= af(x, t), where a is an arbitrary constant. The result is 

a 
f a x '  T;  (x, x')f(x',  t)y(x, t) = +_ ( A 1 2 )  

This is now an equation in the sense that many solutions exist (for different 
a), but it no longer has the Klimontovich form (A11). Instead, a bilinear 
equation is obtained. It is this difference between (All) and (A12) that 
allows consistency between the seemingly nonlinear Klimontovieh "equa- 
tion" and the bilinearity of the correlation functions. 

APPENDIX B: LINEAR KINETIC EQUATION 

A brief derivation of the exact linear kinetic equation for G(x, t; x', 0), 
Eq. (2.14), is given in this appendix using the Zwanzig-Mori projection 
operator formalism. (~7) For backward streaming in time Eq. (A6) may be 
used in the definition (2.10) to give 

Define a projection operator onto the set of functions {~(x)}, by 

eA =fdx,(x)fdx' g '(x,x')<,(x')A > (B2) 

Here ( . - . )  denotes an equilibrium average, A is an arbitrary phase 
function, and g(x, x') is the initial value for G(x, t; x', 0), defined by Eq. 
(2.12). The inverse function, g- l(x,  x'), is defined by 

f dx" g (x ,x" )g - ' ( x" , x ' )  = 8(x - x') (B3) 

The time correlation function G(x, t; x', 0) can then be expressed as 

G( x, t; x', O) = ( O( x ) PO( x', - t) ) (B4) 

where use has been made of the time translation invariance of G(x, t; x', 0). 
Operating on Eq. (B1) with P and 1 -  P provides a closed equation 
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for P~(x, - t), 

- f o ' d T P J _  V(t - -r)(1 - P ) J _  Pe~(x', - ' r )  = 0 

with 

(Bs) 

g(x , x ' )  = ~(x - x')Fo '(X) + h(r - r') 

g - ' ( x ,  x') = a(x - x')Fo(x) - F o ( x ) r o ( x ' ) C ( r -  r') 

(Bll) 

(B12) 

(B13) 

V(t) =-- e x p [ - ( 1  - P ) S _  (1 - P)t] (B6) 

Differentiation of Eq. (B4) and use of (B5) gives the desired exact equation 
for G(x, t; x', 0), 

~---3t G(x, t; x'O) + f dx" ~(x ,x" )G(x" ,  t; x'O) 

fo td . r fdx"K(x , t  ~;x")G(x"'r;x' ,O) 0 (BY) _[_ - -  

where the functions ~2(x, x') and K(x, t; x') are defined by 

~(x, x') = f dx" ( e~(x )J_  4(x") )g  - '(x", x') (B8) 

K(x,  t; x') = f dx" (q~(X)of _ V(t)(1 - e ) J _  ~ (x" ) )g - ' ( x " ,  x') (B9) 

For notational purposes it is convenient to consider ~(x, x') and K(x, t; x') 
as the kernels for two operators a and K(t) defined on the Hilbert space of 
single-particle functions. Then Eq. (B7) becomes 

where G(x, t; x', 0) is taken as a function of x, parameterized by x'. 
In general the operator K(t) cannot be expressed in any simple form 

without introduction of suitable approximations. In contrast, the operator ~2 
depends only on the static equilibrium properties of the fluid and may be 
determined more explicitly. This operator, ~, the function g(x, x') and its 
inverse are evaluated in Ref. 11 with the results 

~2(x,x') = v.  V { 8(x - x ' )F o ' (x) - [  C(r - r') - g (a )  C(~ - r') ]} 

- g ( o )  f dx" Fo(x")T_ (x ,x" ) [  a(x  - x') + a(x"  - x') ] 
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Here h(r) = g(r) - 1, and g(r) is the radial distribution function. Also, C(r) 
is the direct correlation function and C(~ is its low-density limit. 

APPENDIX C: DERIVATION OF EQ. (4.4) 

In this appendix the Klimontovich equation is obtained in the form of 
Eq. (4.4) and it is shown that the operator ~ in this equation is the same as 
that occurring in the linear kinetic theory. Equation (2,24) is first rewritten 
a s  

( - ~ t + L ) @ +  P j [q~ ,eO]=( l - -  Pt)Y[eO, eO] (C1) 

where L and a 7 are defined by Eq. (2.25) and Pt is given by Eq. (B2) with 
@(x) replaced by @(x, t). The free streaming part of the operator L is 
represented by the identity 

v. V~,(x, t ) =  v . V f d x ' 8 ( x  - x')e~(x', 0 (C2) 

and, substituting Eq. (B3) in (C2), the Klimontovich equation (C1) becomes 

+ fd , < [ v,(x))(x,,)> 
-Y[~,  I] - Y[ I,,~] - e,Y[~,~] = (l - P,)Y[~,e~] (c3) 

The last term on the left side of (C3) is, explicitly, 

- Ptf[ep, 4,] = - f d~ '  dx" dx"' eo(x'" ) T_ (x, x'")ep(x', t) 

xg-'(x',x")<r162 (C4) 

But the correlation function in Eq. (C4) is also given by 

< ~ ( x " ) , ( x ) ~ ( x ' " ) >  = Fo '(x)Fo'(X'")<~,(x")f(x)f(x'")) 

- g ( x " ,  x )  - g ( x " ,  x '")  

and therefore 

( c 5 )  

- g f [ ~ , q , ]  = - f dx'dx" ~(x')g '(x',x")Fo'(x) f dx'"~_(x,x'") 

• (ep(x")f(x)f(x"')) + f[q~, 1] + ] [  1, @] (C6) 

The last two terms in this equation are due to the last two terms in Eq. 
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(C5). Substitution of (C6) in (C3) then gives 
a 
3-7 ~(x, 0 

+ l [ , .  
Xg-i(x",x')eO(x',t) = (1 - P , ) f [qJ ,  g,] (C7)  

The second term on the left can be transformed further by using Eq. (A10), 
so the Klimontovich equation becomes 

e(x, 0 + fd~" dx" ( , ( x ) J _  <~(x " ) )g - ' (~ " ,  x')<S>(x', 0 = (1 - P, )J'[ <S>, q> ] 

or finally, 

with 

-~t $(x,t) + f dx'~(x,x')q~(x',t) = B[O(t),ep(t) ] (C8) 

BIeP(t),ep(t)] = (1 - Ps)f[O,q)] (C9) 

~(x,x,) = f dx" ( O ( x ) f  _ O(~"))g-'(x",x') (el0) 

This is the desired result, Eq. (4.4), and also confirms that the operator ~2 is 
the same as that occurring in the linear kinetic theory, Eq. (B10). 

Equation (C8) is valid for the time domain t > 0. For negative times 
the corresponding equation is obtained from the Klimontovich equation 
(All), with t < 0: 

f (Cll) 
Here B is obtained from Eq. 0.5) by changing t to - t  and replacing 
T (x,x') by the operator T+ (x,x'). The operator ~ is given by 

~(x ,x ' )  = - f dx" ' (ep(x)J  + r  (C12) 

APPENDIX D: PERTURBATIVE APPROXIMATION FOR G(x, t; x', O) 

The purpose of this appendix is to derive Eq. (4.12). Use of Eq. (4.9) in 
Eq. (4.8) leads to 

' = f 0 ' d t ' e - ~ x ~ ' - " ~ ( B [ , , ~ ] , ( x  ', - t ' ) )  G(x,t;x ,0) e-a(X)tG(x,O;x',O) + 

(D1) 
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The formal solution to the backward Klimontovich equation, (4.10), may 
now be applied to obtain 

, , fatdt ' - G(x , t ;x  ,0) = G(~ ,0) + e-a(x)('-C)e-a(x')C(B[~,~lq~(x')) 

+ (tdt ,(Cdt, ,  e-a(x)(,-c) e -~(x')(,'-,") 
dO .I0 

X (BIq~,~]B[eo(- t" ) ,ep(- t" )] )  (D2) 

where 

G (~ t; x', 0) = e - a(x)t G (x, 0; x'0) (D3) 

Also, by using definition (4.5), it can be seen that the first-order correction, 
is identically zero since 

([(1  - P)eo(x)eo(Xo)]eo(x')) = 0 (D4) 

Using the explicit forms of B and B, as given by Eq. (4.5), to second order 
in the perturbation we find 

G(2)(x,t; x', O) = fotdt' foC dt" f dx2 Fo(x2)e -a(x)('-''' 

• e -~(x')(,'-c') A (x, x', x2) (D5) 

where 

A (x,x' ,x2) = f d x ,  dx3dx4Fo(x,)g(x, x4)g- ' (x4 ,x3) f _  (x3 ,x,) T+ (x',x2) 

• C(x  3 ,x 1 ,0; x ' ,x  2 , - t") (D6) 

with 

C ( x  3 , x  1 ,0 ;  x t ,  x 2 ,  -- t") 

= ([(1 - P)q~(x3)eO(Xl)l[(1- P_ t - )q ' ( x ' , - t " )e~(x2 , - t " ) ] )  (D7) 

To second-order correction, G (2), C is evaluated using the lowest-order 
approximation, ~ ( 0 ( x , -  t ) =  e-a(x)tq~(x) in Eq. (D7). To this order it is 
possible to show that for an arbitrary function +(x) 

(D8) P+(x, t) = P_ t+(x, t) 

and, thus, Eq. (D7) can be written as 

C(x3 ,xl ,O;x',x2, - t") 

= e-I~(x') + a ( x 2 ) l t " ( ( ~ ( X 3 ) O ( X t ) ( 1  __ p)q~(x,),(x2))(~ (D9) 
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Here, as in Section 4, the superscript on the brackets indicates that this 
static correlation function must be evaluated in an approximation consis- 
tent with the stationary condition (4.7). 

To transform the above expression for G (2) to the form given in (4.13), 
apply the identity 

e-~x~'~(x) = f dx'dx" C~~ ') (DIO) 

to A (x, x', x2) and take the adjoint in the sense of Eq. (A7). This leads to 

e -~x)~,-OA (x, x', x2) = f d x ,  dx 3 dx,  go(x 0 G~~ t - t'; x4, O) T+ (x3, x,) 

• s-kx4, x3)f+ (x', x2)C(x3, x , ,  0; x', x2, - r') 

( D l l )  

But from Eqs. (A5), (A7), and (B13) it follows that 

T+ (x 3 ,X l )g - l ( x4 , x3 )  = T+ (x 3 ,Xl)Fo(x4)8(x 4 - x3) (D12) 

so Eq. (D11) becomes 

e - ~(x)(t- r)A (x, x', x2) 

= f d X l  dx 3 dx 4 Fo(x,)Fo(x4)G(~ t -- t ' ;  x4 ,0 )a (x  4 - x3) 

• f - ( x 3 , x , ) T + ( x ' , x z ) C ( x 3 , x ,  ,0; x ' ,x  2 , - t " )  (D13) 

where the adjoint was taken again. In a similar calculation, it may be 
shown that 

e - ~ x ~ ' - " ~ e  - ~ ~'~"'-'"~A ( x ,  x ' ,  x~)  

f dx, dx 3 dx 4 dx 5 dx 6 go(x,)ro(x3)Fo(x4 ) 

X G ( ~  t " )G~~ if ;x4,0) 

• (~(X 4 -- x 3 ) T _  ( x  3 , X l ) C ( x  3 , x  I , 0 ;  x 5 , x 2 ,  --  tit) 

• T_ (xs,  x:)Fo(x6)6(x 6 - Xs) (DI4) 

Substitution of this result into Eq. (D5) yields 

G(2l(x,t;x',O) = dt' d t ' d x l d x 2 G ( ~  t ' ;x  1 ,0) 

•  t")G~~ ") (D15) 



286 

where  we  h a v e  d e f i n e d  

F ( x l ,  x 2 ; t) = / d x  3 dx4dx  s ro (x3)Fo(xn)Fo(xs )  T_  ( X l ,  x3) 

• C ( x  3 , x , , O ; x  4 , x S ,  - t ) T  ( x  4 , x S ) 6 ( x  5 - x 2 )  

Dufty and Rodr;guez 

(D16)  
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